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PERPENDICULAR POLARIZATION

PLAN VIEW

Strip simulation of an amsotropic plasma. Adjustment of the orien-
tation of the strips can simulate the required anisotropy.

Fig. 6.

in fusion machines [17], is presently under investigation by the
first author. It appears the strips are more suitable than the rods
for simulating the anisotropic plasma. The orientation of the
strips (Fig. 6) with reference to the direction of propagation can
simulate the required anisotropy.

VIL

In this paper, a technique is developed for the simulation of
the lossless and low-loss plasma, using the two-dimensional strip
medium. The plasma parameters (plasma frequency w, and colli-
sion frequency ») are related to the parameters of the strip
medium (width of the strip (w), thickness of the strip (1),
separation between two strips (@), and spacing between two
successive planes in the direction of propagation (5)).

The necessary conditions for the plasma simulation are: 1) the
electric vector of the incident wave should be parallel to the
strips; 2) the spacing between two successive planes of strips in
the direction of propagation should be less than the separation
between strips in the transverse plane to avoid the reactive
coupling between adjacent planes of elements; 3) the width of the
strips should be less than the separation between strips; and 4)
the separation between strips should be less than half of the
free-space wave length.

SUMMARY
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Microwave Radiation from a Magnetic Dipole in an
Azimuthally Magnetized Ferrite Cylinder

R. S. MUELLER

Abstract — The electromagnetic radiation pattern from a ferrite coated
dipole antenna is a torus with a point center. By deriving an expression for
the far-field electric field and defining a form factor F(6), the dilations
and contractions of the radiation pattern were evaluated and demonstrated
graphically.

I. INTRODUCTION

Almost all the work on ferrite antennas has been experimental.
Attempts to explain the radiation patterns of ferrite radiators
have been based on an analysis by Kiely [1] who considered
dielectric rods in the hybrid HE,; mode. The present paper is
concerned with radiation from a magnetic dipole in an azimuth-
ally magnetized ferrite cylinder. Similar problems are found in
the literature on antennas immersed in plasmas or with ferrite
coatings. The number of these articles [2]-[10] increased when
plasma effects began to interrupt communications with space
vehicles reentering the Earth’s atmosphere.

An oscillating magnetic dipole in a column of azimuthally
magnetized ferrite may act as a waveguide and as a radially
radiating antenna. A magnetic dipole along the z-axis consists of
a loop antenna in the x-y plane with a sinusoidal circulatory
current. The loop antenna is a less effective radiator than an
electric dipole antenna of the same size and driving current.
However, at low frequencies the electric dipole requires a higher
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driving voltage to produce a significant current distribution along
its length. The choice of a magnetic dipole rather than an electric
one was made because the magnetic dipole excites the azimuth-
ally-symmetric, magnetically dependent TE modes [11] along the
cylinder. An electric dipole supports the magnetically indepen-
dent TM modes.

Azimuthal magnetization could be achieved with a small cur-
rent carrying center conductor. Ampere’s law predicts that the
magnetic field in the ferrite would be H, = I /27p where I is the
current in the conductor and p is the radial cylindrical coordi-
nate (a > p > b). The outer and inner radii of the ferrite tube are
a and b. Although the magnetic field varies with distance from
the axis, if a — b, the thickness of the ferrite tube, is small
compared with 1/2(a + b), the mean radius, then the magnetic
field will be approximately uniform across the ferrite with the
value H, = I/m(a + b). The behavior of a dipole in an azimuth-
ally magnetized ferrite cylinder described here assumes that there
is no radial dependence of the applied field.

The boundary value problem was solved using exponential
transforms of the field equations. To find the radiation pattern
the inverse transform was needed. However, the inverse trans-
form expression involves an integral with a very complicated
transcendental integrand. The saddle-point method of evaluating
contour integrals was applied to find the far-field radiation
pattern.

II. THE AZIMUTHALLY MAGNETIZED CYLINDER

The radiator shown in Fig. 1 consists of a uniformly mag-
netized ferrite cylinder of radius @ coaxial with the z-axis. The
magnetic dipole source or feed is also oriented along the z-axis
and is located at the origin of the set of cylindrical coordinates p,
¢, and z.

The magnetic dipole vector may be expressed as a product {5]
of delta functions:

M=2M, M,=iM,5(p)8(z)/m.
Without loss of generality, the electromagnetic fields were as-
sumed to vary as exp(— jwt) where w is the angular frequency
and ¢ is time. The electromagnetic field equations from the small
signal theory of microwave ferrites are written:

VXI{= - jwf()ffE
VXE = jop,pH+M

where ¢, is the relative permittivity and j is the positive square
root of minus one. The microwave excitation frequency is given
by f, the precessional frequency f; by BH,, and the magnetiza-
tion frequency f,, by BM, where 8 is the gyromagnetic ratio and
M, is the saturation magnetization.

The relative permeability tensor p of an azimuthally mag-
netized ferrite is given by

) 0 Jjx
p=| O 1 0
—Jjk 0 p
where
fOfm ffm
p=1+ K= .
fo2 _fz fo2 '_f2

Since the magnetic dipole is azimuthally symmetric, all the elec-
tromagnetic fields are independent of ¢. Therefore, it may be
assumed that the electromagnetic field solutions may be ex-
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Fig. 1. A magnetic dipole in a cylinder of azimuthally magnetized ferrite.

pressed in the form

7o) =(2m) " [7 Fp.0) ek dg

F(p,¢) = (27r)_1/2f~°°wf(p,z)e"/§" de.

Solutions to the wave equation for the fields in the ferrite
region (p < a) can be found [11] in the Literature:

E,(p.$) =1/(1+a®)m k[ M (a; kp) + L($) B, (a; kp)]
where

X a,taa,
Bi(a;x) =agx+a;xt— Y mx

n+3

n=0
1 a
a0=5 al=—g

Hy(a; x) =%{[ln§ +‘Y} Bi(a;x)+ i d,‘x"‘l}

n=0
1 a 1
DTTE ATTEE AT
An+Va,+d,+ad,
D2 =" n(n+2)

vy = Euler’s constant.

The function M{(a; x) is the complex sum of B;(a; x) and
H,(a;%):

M®(a; x) =B, (a; x)+ jH,(a; x).
The undetermined constant L({) can be found from the boundary

conditions and m, is the normalized amplitude of the magnetic
dipole (27)~'/?M,. The field component H,(p,{) is given by

H.(p,¢) =3(1+a®)m, k { x| MO (a; ko) + L($) By(; kp)]
+ k[ MEO (s ko) + L($) By( e ko) } /%6

where a=—{x/kp, k*=Peuo(p? —k*)/pn—1t%, and y3=
wpy(p? — k?). The radial propagation constant in the ferrite is k.
The zero-order functions are defined as follows:

1d
- [oA1(@; kp)] =kAy(a; kp).

p dp

The quantity A denotes B, H, or M" or any linear combination

of these functions.
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The electromagnetic fields in the adjoining air region are

E,(p,$) =4j(1+a®)m,D($) HP (44p)
H,(p,$) =(1+a*)m §,D($) HP (4op) /4wp, (1)

where £3 =k} —¢2. The quantity D({) may be determined by
equating the tangential components of the field vectors in the
ferrite to those in the air at p = a:

D'(§) = uk®| By(a; ka) MV (a; ka)
— By (a; ka) M («; ka)] /+¢
A($) = — k& B, (a; ka) HP (£ga) /wpo
+ k[ kB, (a; ka) + pkBy(a; ka) | HO (§oa) /v¢

whete D’ = DA. To find E,(p, z), take the inverse transform of
D:

E,(p,z) = j(327) "*(1+ a®)m,
7 DOATHD ey e ds. ()

The poles of the integral expression are given by the roots of
A(¢) =0. The real { roots satisfy the following equation:

£ B, (s ka) H (£0a) /oo
~[k¢By(@; ka) + pkBy(a; ka)] HY (§a) /43 = 0.

The Hankel functions are complex numbers for real values of
§ya. Therefore, the left-hand side is complex in general, even if k
is real or imaginary. The real { roots of the equation can exist
only when the equation has all real terms. This will be true only
when £,a is purely imaginary since H{V(jx) is imaginary and
H{V(jx) is real. Physically when £3 is positive the magnetic
dipole will develop a toroidal field pattern in the air. When &2 is
negative the ferrite tube will act like a waveguide for longitudinal
propagation and the fields in the air will decay rapidly away from
the boundary surface.

Without the dipole source [12] the boundary conditions at the
air-ferrite interface cannot be satisfied for k? < 0. There are
natural modes or propagation along the cylinder when k? > 0
and evanescent behavior for k2 < 0. By making the substitution
— &7 for £2, the secular equation that describes the natural waves
propagating along the z-axis is obtained:

§By(a; ka)Ko(gla)/wP'o
+[&¢B,(a; ka) + pkB,( «; ka)] K\(§,a)/v¢ =0.

Equation (2) may be used to find the far-field radiation pattern
when £,p>1 and £} > 0. To evaluate this integral, first make
the following coordinate transformation from cylindrical to
spherical polar coordinates and replace the Hankel function with
ifs asymptotic expansion:

$=kycosy £,=kysing z=rcosl and p=rsind
H"(&p) = (2/w§0p)1/2e1[£op—(3/4),,]

where r is the polar radius and # is the polar angle. From these
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Fig. 2. Polar plot of form factor F(8).

relations one finds
E,(r,0)=—j(1+ thz)Me(k0/32'7r3rsin0)1/2

. /f°° DA T korcos(0=9)=3/9m n1/2y gy,

7 — jo

The asymptotic expansion of the integral according to the
saddle-point method [13] of evaluating contour integrals yields

E,(r,0) =— j(1+a®)M,D'($,) ekor/4mrA(§,)
where {, = k,cosf. The magnitude of the field is
Ey(r,0)|=(1+a®) koM, F(8)/47r. 3)

The shape of the radiation pattern is given by the form factor
F(6):

F(8) =1D'(£0)/kolA (%) 4
ID'(§0)1=|k’u[ B, (a; ka) Hy( a; ka)
= By(a; ka) H,(a; ka)] /13|
1A (8)1 = [ { ko sin BB, (a; ka) Jo(£9a) /wmg
— k[ Bi(a; ka) + pkBy( a; ka)] Ty (£oa) /2 )
+{ kkqy sin 0B, (a; ka) N, (£ya) /wp,
— k[ x$ B (a; ka) + pkBy(a; ka)]

M(&a) /)]

The three-dimensional radiation pattern is a torus with a point
center. Its eross section has the lemniscate shape shown in Fig, 2.

The form factor F(90°) was used to study the dilations and
contractions of the pattern with respect to frequency. It can be
arranged in the following convenient form for amplitude analy-
sis:

(k/ko)|Jo(ka) N;(ka) — J,(ka) Ny(ka)|

F(90°) =

{[Jo(ka)-]1(§oa)_(k/‘fko)fl(ka)-]o(goa)]er [Jo(ka)N1(€oa)_(k/‘fko)Jl(ka)No(goa)]z}

12"
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Fig. 3. Antenna pattern form factor F(90°) versus normalized frequency.

For evaluation, a ferrite rod of radius 0.25 in (0.635 cm),
saturation magnetization of 39788 Am™', azimuthal magnetic
field of 238 732 Am ™!, and relative permittivity of 11 was used.

Fig. 3 shows a series of resonant peaks and troughs. This
behavior is characteristic of the geometry more than the magnetic
properties of the ferrite. A peak occurs approximately at f/f, =
(3/4+ n)c/2afy€)/? where n is an integer. The salient properties
that affect the form factor are the dielectric constant and radius
of the ferrite cylinder. If a wavelength A is defined to be ¢/f¢//?
then the radius can be expressed as a = (3/4+ n)A /2. One can
interpret the peak/trough behavior as body resonances which
occur when the ferrite cylinder has a radius equal to 3\ /8 plus
an integral number of half wavelengths.

In Fig. 3, the peak separation is Af=0.8479f,. Near the
region between 1.0801f, and 1.1667f, the characteristic oscillates
rapidly in magnitude, dropping to zero at 1.0801f,. This is due to
the rapid sign and magnitude changes of the factor (k /ky)J,(ka)
in the denominator at F(90°).

III. RADIATION FROM A TwWO ELEMENT ARRAY

Antenna arrays make use of wave interference phenomena that
occurs between the radiation from different elements [14] of the
array. Consider a two element array of magnetic dipoles in two
azimuthally magnetized ferrite cylinders labeled 0 and 1 and
nondirectional in the plane under consideration. The vector sum
of the fields at an arbitrary point in space, sufficiently remote
from the antenna system will be E=E,(1+ ge’%) where E, is
the field intensity due to antenna O alone, 4 is the ratio of the
magnitudes of the intensities, and Q is the phase difference
between the two radiators. The magnitudes can be controlled by
tuning the static magnetic fields in the ferrite cylinders. The
magnitude of the total field intensity is given by

ET=E¢[(1+ qeosQ)’+ ¢ sinzﬂll/z. (5)

From (3), it can be seen that the magnitude of E,, resulting from
antenna 0 is directly proportional to a form factor F, and the
magnitude of E, from antenna 1 is proportional to F;. Therefore,
q is the ratio F, /F,. When the intensities are equal then E; is
equal to 2E ,cos1 Q. Y

IV. CONCLUSIONS

The present paper has analytically explained the behavior of
one of the elements of an antenna array consisting of azimuthally
magnetized ferrite rods excited by magnetic dipoles. One of the
results of the analysis is a form factor that defines the radiation
pattern in terms of the electromagnetic properties of the ferrite
rod. The basic pattern-is-toroidal but the properties of the ferrite
rod make it adjustable.

The form factor F(8) is resonant in nature exhibiting a large
resonant peak at low frequencies and a regular series of peaks
and troughs at higher frequencies. The radiation from some
elements may be amplified and some attenuated by tuning each
clement of the array separately with its individual azimuthal
magnetic field. In this way, elements may even be turned off
completely when only a selected number of them are required to
radiate.

Further study of magnetic dipole ferrite rod antennas may use
the general expression of the form factor to synthesize arbitrary
radiation patterns. Equation (5) gives the combination of the
field intensities from two nondirectional ferrite rod radiators.
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