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Fig. 6. Strip simulation of an arrrsotropic plasma. Adjustment of the orien-

tation of the strips can simulate the required amsotropy.

in fusion machines [17], is presently under investigation by the

first author. It appears the strips are more suitable than the rods

for simulating the anisotropic plasma. The orientation of the

strips (Fig. 6) with reference to the direction of propagation can

simulate the required anisotropy.

VII. SUMMARY

In this paper, a technique is developed for the simulation of

the lossless and low-loss plasma, using the two-dimensional strip

medium. The plasma parameters (plasma frequency QP and colli-

sion frequency v) are related to the parameters of the strip

medium (width of the strip (w), thickness of the strip (t),

separation between two strips (a), and spacing between two

successive planes in the direction of propagation (b)).

The necessay conditions for the plasma simulation are: 1) the

electric vector of the incident wave should be parallel to the

strips; 2) the spacing between two successive planes of strips in

the direction of propagation should be less than the separation

between strips in the transverse plane to avoid the reactive

coupling between adjacent planes of elements; 3) the width of the

strips should be less than the separation between strips; and 4)

the separation between strips should be less than half of the

free-space wave length.
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Microwave Radiation from a Magnetic Dipole in an
Azimuthally Magnetized Ferrite Cylinder

R. S. MUELLER

Abstract —The electromagnetic radiation pattern from a ferrite coated

dipole antenna is a torus with a point center. By deriving an expression for

the far-field electric field and defining a form factor F( b’), the dilations

and contractions of the radiation pattern were evafnated and demonstrated

graphically.

I. INTRODUCTION

Almost all the work on ferrite antennas has been experimental.

Attempts to explain the radiation patterns of ferrite radiators

have been based on an analysis by Kiely [1] who considered

dielectric rods in the hybrid HEI1 mode. The present paper is

concerned with radiation from a magnetic dipole in an rtzimuth-

ally magnetized femite cylinder. Similar problems are found in

the literature on antemas immersed in plasmas or with ferrite

coatings. The number of these articles [2]–[10] increased when

plasma effects began to interrupt communications with space

vehicles reentering the Earth’s atmosphere.

An oscillating magnetic dipole in a column of azimuthaUy

magnetized ferrite may act as a waveguide and as a radially

radiating antenna. A magnetic dipole along the z-axis consists of

a loop antenna in the x-y plane with a sinusoidal circulatory

current. The loop antenna is a less effective radiator than an

electric dipole antenna of the same stie and driving current.

However, at low frequencies the electric dipole requires a higher
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driving voltage to produce a significant current distribution along
its length. The choice of a magnetic dipole rather than an electric
one was made because the magnetic dipole excites the azimuth-
ally-symmetric, magnetically dependent TE modes [11] along the
cylinder. An electric dipole supports the magnetically indepen-
dent TM modes.

Azimuthal magnetization could be achieved with a small cur-
rent carrying center conductor. Ampere’s law predicts that the
magnetic field in the ferrite would be H, = 1/2 rp where 1 is the

current in the conductor and p is the radial cylindrical coordi-

nate (a > p > b). The outer and inner radii of the ferrite tube are

a and b. Although the magnetic field varies with distance from

the axis, if a – b, the thickness of the ferrite tube, is small

compared with 1/2( a + b), the mean radius, then the magnetic

field will be approximately uniform across the ferrite with the

value H, = 1/n( a + b). The behavior of a dipole in an azimuth-

ally magnetized ferrite cylinder described here assumes that there

is no radial dependence of the applied field.

The boundary value problem was solved using exponential

transforms of the field equations. To find the radiation pattern

the inverse transform was needed. However, the inverse trans-

form expression involves art integral with a very complicated

transcendental integrand. The saddle-point method of evaluating

contour integrals was applied to find the far-field radiation

pattern.

II. THE AZIMUTHALLY MAGNETIZED CYLINDER

The radiator shown in Fig. 1 consists of a uniformly mag-

netized ferrite cylinder of radius a coaxial with the z-axis. The

magnetic dipole source or feed is also oriented along the z-axis

and is located at the origin of the set of cylindrical coordinates p,

~, and Z.

The magnetic dipole vector may be expressed as a product [5]

of delta functions:

M = 2M, M, =~M,8(f3)8(z)/?rP.

Without loss of generality, the electromagnetic fields were as-

sumed to vary as exp( – jti t) where o is the angular frequency

and t is time. The electromagnetic field equations from the small

signaf theory of microwave ferrites are written:

‘XII= – jct)cocf E

‘XE=jupOpH+M

where c, is the relative permittivity and j is the positive square

root of minus one. The microwave excitation frequency is given

by ~, the precessional frequency j. by 9HZ, and the magnetiza-

tion frequency fm by /3MX where /3 is the gyromagnetic ratio and

M, is the saturation magnetization.

The relative permeability tensor p of an azimuthally mag-
netized ferrite is given by

[1
O jtc

J.L= : 1 0
–jlc o /.L

where

lx.~=l++A- ~=
fo -f 2

f;-fz”

Since the magnetic dipole is azimuthally symmetric, all the elec-

tromagnetic fields are independent of #J. Therefore, it may be

assumed that the electromagnetic field solutions may be ex-

H,

v

FERRITE

CYLINDER

Fig. 1. A magnetic dipole in a cylinder of azimuthally magnetized ferrite,

pressed in the form

f F(p,f).’”dftP!z) =(2m)-’/’ m

F(p, {) = (27r-1’2 ~:f(p,z)e-J(=dz.
–w

Solutions to the wave equation for the fields in the ferrite

region ( p < a) can be found [11] in the literature:

E@(p, {)=~j(l+ a2)m,k[M{1)(a; kp)+L({)B1(a; kp)]

where

co an+aan+l
Bl(a; x) =aOx+a1x2– ~

~= O(n+2)(n+4)x”+3

1 a
aO=—

2
al=—_

6

([ 1
Hl(a; x) =: ln~+y Bl(a; x)+ ~ d.x”-l

~=() )

1
dO=– — dl= –-& d2=–:

az+l

2(n+l)an+dn+adn+1
d ,,+2=—

n(n +2)

y = Euler’ s constant.

The function M~l) ( a; XI is the complex sum of B1 ( a; x) and

Hl(a; x):

J@(a;x)=lll(a;x)+ j~l(a; x).,

The undetermined constant L({) can be found from the boundary

conditions and me is the normalized amplitude of the magnetic

dipole (27r)- 112M,. The field component Hz (p, () is given by

H=(p, {) =~(l+a2)m,k {lic[Mf)(a; kp)+.L(l)B1(a; kp)]

+kp[M$)(a; kp)+L(f)BO(a; kp)]]/y~

where a= – lic/kp, k2 = W2CILO(p2– K2)/p – i2, and y; =

~PO ( P2 — K2). The radid propagation constant in the ferrite is k.

The zero-order functions are defined as follows:

~~[pA1(a; kp)]=kAO(a; kp)

The quantity A denotes B, H, or M(l) or any linear combination

of these functions.
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The electromagnetic fields in the adjoining air region are

E@(p, t) =~j(l+ a2)m,D(1’)H~l)( ~oP)

Hz(p, ~) = (l+a2)mc$oD(OH ~1)(~op)/4tipo (1)

where ~~ = kg – {2. The quantity D({) may be determined by

equating the tangential components of the field vectors in the

ferrite to those in the air at p = a:

D’(r) =pk3[Bo(a; ka)ikf[l)(a; ka)

– Bl(a; ka)ikf$)(a; ka)]/y~

A(r) = – k$olll(a; ka)H#)(&a)/a#O

+ k[fc{lll(a; ka)+pkl?o(a; ka)]HJ1)($oa)/yF

whe~e D’ = DA. To find E+ ( p, z ), take the inverse transform of

(1):

Eo(p, z) =j(32n) “l’(l+a’)me

~w D(J)A-lH~l)($op)eJfzd~. (2)
—ccl

The poles of the integral expression are given by the roots of

A({) = O. The real ~ roots satisfy the following equation:

~oB1(a; ka)H#)(foa)/apo

-[ K{Bl(a; ka)+pkl?o(a; ka)]Iifl)(goa)/y~ = O.

The Hankel functions are complex numbers for real values of

$Oa. Therefore, the left-hand side is complex in general, even if k

is real or imaginary. The real J roots of the equation can exist

only when the equation has all real terms. This will be true only

when .$’Oa is purely imaginary since H#) ( jx ) is imagin~ and

H/l) ( jx ) is real. Physically when g; is positive the magnetic

dipole will develop a toroidal field pattern in the air. When $8 is

negative the ferrite tube will act like a waveguide for longitudinal

propagation and the fields in the air will decay rapidly away from

the boundary surface.

Without the dipole source [12] the boundary conditions at the

air-ferrite interface cannot be satisfied for k2 <0. There are

natural modes or propagation along the cylinder when k 2> ()

and evanescent behavior for k’ <0. By making the substitution

– .$? for ~~, the secular equation that describes the natural waves

propagating along the z-axis is obtained:

&Bl(a; ka)KO(&a)/@pO

+[kJBl(a; ka)+pkBo(a; ka)]K1(&la)/yf =0.

Equation (2) may be used to find the far-field radiation pattern

when $0 p >>1 and ~~ >0. To evaluate this integral, first make

the following coordinate transformation from cylindrical to

spherical polar coordinates and replace the Hankel function with

its asymptotic expansion:

l=kocos$ .$O=kosin$ z=rcos O and p=rsine

1/2 J[$oP–(3/4)7]@)($op) = (2imfOp) e

where r is the polar radius and O is the polar angle. From these
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Fig. 2. Polar plot of form factor F(8).

relations one finds

E@(r, O) = – j(l+ a2)Me(ko\32n3rsin0 )1’2

“Jjco
DtA–leJ[k,rCOS( 8-+)-(3/+] sin112$d#.

T—]cc

The asymptotic expansion of the integral according to the

saddle-point method [13] of evaluating contour integrals yields

Eo(r, O) = – j(l+a2)M,D’(Jo) eJk@/4nrA(Jo)

where lo = kocos 19.The magnitude of the field is

lEO(r, 8)1= (1+ a2)koM,F(6)/4mr. (3)

The shape of the radiation pattern is given by the form factor

F(6):

F(o) =lD’({o)/koA(Io)l (4)

lD’(fo) l=lk3v[ Bl(a; ka)Ho(a; ka)

–Bo(a; ka)Hl(a; ka)]\y}l

IA(s’0)1= [{kkosinf$’l$(a; ka)JO(gOa)/upo

– k[~tolll(a; ka)+pkl?o(a; ka)]J,(&oa)/y~}2

+ { kko sin OBl(a; ka)No(foa)/~Po

–k[@oB1(a; ka)+pkZIo(a; ka)]

.N1($oa)/y~}2]1’2.

The three-dimensional radiation pattern is a torus with a point

center. Its cross section has the lemniscate shape shown in Fig. 2.

The form factor F(90°) was used to study the dilations and

contractions of the pattern with respect to frequency. It can be

arranged in the following convenient form for amplitude analy-

sis:

(k/ko)lJo(ka)Aj( ka)-J1(ka)No(ka)l
F(90”) =

{[ Jo(ka)J~(foa)-( k/~fko)J~(ka)Jo( &Oa)]2+[Jo(ka)Nl( &oa)-(k/c,ko)Jl( ka)No(&oa)]2]1'2"
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For evaluation, a ferrite rod of radius 0.25 in (0.635 cm),

saturation magnetization of 39788 An--l, azimuthaf magnetic

field of 238732 Am-1, and relative permittivity of 11 was used.

Fig. 3 shows a series of resonant peaks and troughs. This

behavior is characteristic of the geomet~ more than the magnetic

properties of the ferrite. A peak occurs approximately at ~/fO =

(3/4 + tz)c/2afOc~ where n is an integer. The salient properties

that affect the form factor are the dielectric constant and radius

of the ferrite cylinder. Ifawavelength A isdefined to be c/f(~

then the radius can reexpressed as a=(3/4+n)A/2. One can

interpret the peak/trough behavior as body resonances which

occur when the ferrite cylinder has a radius equal to 3A/8 plus

an integral number of half wavelengths.

In Fig. 3, the pm.k separation is Af = 0.8479f0. Near the

region between 1.0801 f. and 1.1667~0 the characteristic oscillates

rapidly in magnitude, dropping to zero at 1.0801j0. This is due to

the rapid sign and magnitude changes of the factor ( k/kO) J1( ka)

in the denominator at F(90°).

III. RADIATION FROM A Two ELEMENT AWY

Antenna arrays make use of wave interference phenomena that

occurs between the radiation from different elements [14] of the

array. Consider a two element array of magnetic dipoles in two

azimuthally magnetized ferrite cylinders labeled O and 1 and

nondirectional in the plane under consideration. The vector sum

of the fields at an arbitrary point in space, sufficiently remote

from the antenna system will be E = E+ (1 + qeJ”) where E+ is

the field intensity due to antenna O alone, q is the ratio of the

magnitudes of the intensities, and Q is the phase difference

between the two radiators. The magnitudes can be controlled by

tuning the static magnetic fields in the ferrite cylinders. The

magnitude of the total field intensity is given by

E~=EO [(l+ qcos Q)2+ q2sin2Q]1’2. (5)

From (3), it can be seen that the magnitude of E+ resulting from

antenna O is directly proportional to a form factor F. and the

magnitude of E+ from antenna 1 is proportional to F1. Therefore,

q is the ratio F1/FO. When the intensities are equal then IET is

equal to 2E6COS4 Q.

IV. CONCLUSIONS

The present paper has analytically explained the behavior of

one of the elements of an antenna array consisting of azimutkdly

magnetized ferrite rods excited by magnetic dipoles. One of the

results of the anrdysis is a form factor that defines the radiation

pattern in terms of the electromagnetic properties of the ferrite

rod. The basic pattern-is toroidal but the properties of the ferrite

rod make it adjustable.

The form factor F(8) is resonant in nature exhibiting a large

resonant peak at low frequencies and a regular series of peaks

and troughs at higher frequencies. The radiation from some

elements may be amplified and some attenuated by tuning each

element of the array separately with its individual azimuthal

magnetic field. In this way, elements may even be turned off

completely when only a selected number of them are required to

radiate.

Further study of magnetic dipole ferrite rod antennas may use

the general expression of the form factor to synthesize arbitrary

radiation patterns. Equation (5) gives the combination of the

field intensities from two nondirectional ferrite rod radiators.
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